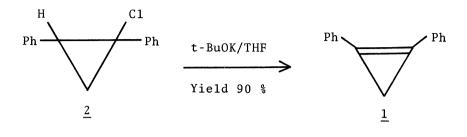
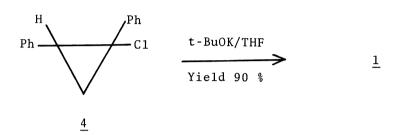
A NEW SYNTHESIS AND ENE REACTION OF 1,2-DIPHENYLCYCLOPROPENE

Zen-ichi YOSHIDA and Hideki MIYAHARA

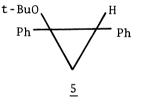
Department of Synthetic Chemistry, Kyoto University


Yoshida, Kyoto, 606


A new worthwhile synthesis of 1,2-diphenylcyclopropene $(\underline{1})$ by the dehydrochlorination of cis- and trans-1-chloro-1,2-diphenylcyclopropanes has been found. The isolation of two dimers and energeactions of 1 have also been described.

The cyclopropene system having a methylene group as the ring member, especially 1,2-diphenylcyclopropene ($\underline{1}$) is significant as a probe for the investigation of physical and chemical properties of highly strained double bond. Although we recently encounter only one paper¹⁾ dealing with the preparation of $\underline{1}$, its preparation method does not seem to be straightforward and worthwhile, because diphenylcyclopropenyl cation is used as the starting system. From this reason, we have investigated a straightforward and worthwhile synthesis of $\underline{1}$ due to the dehydrochlorination of cis- and trans-1-chloro-1,2-diphenylcyclopropanes, being so far reported to be unsuccessful. $\underline{2}$

Here, we wish to report such a new synthesis of $\underline{1}$. A large excess of powdered potassium tert-butoxide was added to the solution of cis-1-chloro-1,2-diphenylcyclo-propane $(\underline{2})^3$ in tetrahydrofuran (THF) at room temperature under nitrogen, and the mixture was stirred for 24 hours. Ordinary workup afforded $\underline{1}$ in 90 % yield, $C_{15}H_{12}$, mp 50-51°C, (lit. 1) mp 42-47°C). Same treatments of the trans-isomer ($(\underline{4})$, bp 190°C/1 mm Hg) and of the mixture of both isomers ($\underline{2}$ and $\underline{4}$) also aforded $\underline{1}$ in 90 % yield, respectively. Hydrogenation of $\underline{1}$ on Pd-C gave cis-1,2-diphenylcyclopropane, mp 37°C, in quantitative yield. It is to note that the reaction of the trans-isomer (4) with potassium amide in dimethoxyethane for 24 hours at room temperature has afforded $\underline{1}$ in 60 % yield contrast to the case $\underline{3}$ of the reaction of $\underline{2}$ (product; $\underline{3}$). As the synthetic method of $\underline{1}$ by dehydrochlorination of $\underline{2}$, t-BuOK-THF gave a best


result.

When t-BuOK-dimethylformamide was used as the dehydrochlorinating agent, the mixture of several products containing a minor amount of $\underline{1}$ was obtained. For instance, at around 80°C a major product was $\underline{5}$, $C_{19}H_{22}O$, bp 190°C/1 mm Hg; nmr (CDC1 $_3$), three multiplets at τ 2.50-3.10,

7.40 and 8.22 (10H, 1H, and 2H respectively), one singlet at 8.85 (9H); uv (CH_2Cl_2) showed only end absorption, and at 0-20°C major products were polymeric, two of which corresponded to the dimer A (yield 20 %) and B (yield 10 %)

of <u>1</u>. The dimer A, $C_{30}H_{24}$, (yellow viscous oil)⁸⁾, mass spectrum, m/e 384 (M⁺), was also quantitatively produced after standing the solution of <u>1</u> for several days at room temperature.^{4,5)} The dimer B (mp 260-261°C) was assigned to 2,3,5,6-tetraphenylcyclohexa-1,3-diene (<u>6</u>) from the elemental analysis⁸⁾ and the following spectral data; nmr (CDCl₃), multiplets at τ 2.40-3.20 (22H) and a singlet at 6.30 (2H); uv, λ_{max} (CH₂Cl₂) mµ(log ε) 255 (4.3), 288 (sh, 3.9); mass spectrum m/e 384 (M⁺ 10 %), 382 (100 %).

Although 1,4-cycloaddition of $\underline{6}$ has not yet been attempted, the quantitative transformation of $\underline{6}$ to $\underline{3}$ on heating in refluxing toluene for three days is well understood from the assigned structures and mass spectrum of 6.

An attempted reaction of $\underline{1}$ with equimolar amount of dibenzoylacetylene in benzene at room temperature was found to afford an ene reaction product $\underline{7}$, $C_{31}H_{22}O_2$, in 90 % yield, mp $166-167^{\circ}C$; nmr (CDCl $_3$) only complicated multiplets at τ 2.0-3.0, ir (KBr), 1780 cm $^{-1}$ (cyclopropene double bond), 1660 cm $^{-1}$ and 1580 cm $^{-1}$; uv, λ_{max} (CH $_2$ Cl $_2$) 260 m $_{\mu}$ (log ε 4.2). A similar ene reaction product $\underline{8}$ was also obtained in 40 % yield by the reaction of $\underline{1}$ with excess diethyl acetylenedicarboxylate, $C_{23}H_{22}O_4$ (unstable oil); nmr (CDCl $_3$), multiplets at τ 2.0-2.9 (10 H, phenyl H), two singlets at 3.13 (1 H, cyclopropene H) and 4.27 (1 H, vinyl H), double quartets at τ 5.9 (4 H) and double triplets at τ 8.9 (6 H) due to two ethyls; uv, λ_{max} (CH $_2$ Cl $_2$) 250 m $_{\mu}$ (log ε 4.0); mass spectrum, m/e 362 (M $^+$, 80 %), 289 (80 %), 244 (50 %), 217 (80 %), 216 (70 %), 215 (100 %), 105 (70 %), 77 (30 %). The cis configuration of $\underline{7}$ and $\underline{8}$ is presumed by analogy with the ene reaction product between 1-methylcyclopropene and hexafluorobutyne-2. 4c

Ph

H

$$X-C = C-X$$

Ph

H

 $X = COPh$
 $X = CO_2Et$

Financial support of the present work by a Grant for Scientic Research from the Ministry of Education is gratefully acknowledged.

REFERENCES

- 1) D. T. Longone and D. M. Stehouwer, Tetrahedron Lett. 1970, 1017.
- 2) See references cited in Ref. 1.
- 3) R. Breslow, P. Gal, H. W. Chang, and L. J. Altman, J. Amer. Chem. Soc., <u>87</u>, 5139 (1965). The cis configuration of phenyls of <u>2</u> was established by treating with n-BuLi followed by water⁶⁾, because of the exclusive generation of cis-1,2-diphenylcyclopropane.
- 4) Thermal ene-type dimerization reactions of some cyclopropenes are known⁷⁾:

 (a) R. Breslow and P. Dowd, ibid., <u>85</u>, 2729 (1963), (b) P. Dowd and A. Gold,

 Tetrahedron Lett. <u>1969</u>, 85, (c) F. J. Weigert, R. L. Baird, and J. R. Shapley,

 J. Amer. Chem. Soc., 92, 6630 (1970).
- 5) The structure of this dimer is not yet determined.
- 6) H. M. Walborsky, F. J. Impastate, and A. E. Young, J. Amer. Chem. Soc., <u>86</u>, 3283 (1964).
- 7) Cf. A. J. Schipperijn and J. Lukas, Tetrahedron Lett. 1972, 231.
- 8) All new compounds described gave satisfactory elemental analyses.

(Received February 5, 1972)